Math, asked by shubhamgupta3651, 1 year ago

If log (a-b) = log a-log b, then what will be value of a in terms of b?

Answers

Answered by priyanshu1812
2

Answer:


Step-by-step explanation:


Attachments:
Answered by choicebussiness
2

Answer:

b= (a±√a²-4a )/2

Step-by-step explanation

i am not quite sure about the answer so please read the solution only if the answer is correct.

loga-log b can b written as log(a/b)

log (a-b)= log (a/b)

a-b=a/b

b²-ab=a=0

now this is a differential equation in terms of b ,

you may now use the formula for finding the roots of equation to get the value of b

the formula is -> for equation of ax²+bx+c =0,

x={ -b ±√b²-4ac}/2a

using this you will get the above mentioned answer.

do let me konw if the answer is correct!



choicebussiness: i have written an = instead of + so the correct equation is b*2 -ab+a=0
Similar questions