Math, asked by poojajain3800, 1 year ago


If log a (log 3 (log 2 (512))) = 1 then a = ​

Answers

Answered by katherapalli10
13

Answer:

Ans: 2

solution:

log a( log 3(log 2(512)))=1

log a( log 3(log 2(2^9)))=1 2^9 = 512

log a( log 3( 9 log 2(2)))=1 log m^n = n log m

log a( log 3( 9 *1 ))=1 log m m= 1

log a( log 3 ( 9 )) =1

log a( log 3 (3^2)) =1

log a( 2 log 3 3)=1

log a(2*(1))=1

log a (2)=1

a= 2

Answered by pulakmath007
1

 \sf \: If \:  log_{a}( log_{3}( log_{2}(512) ) ) = 1 \:  \: then \: a = \bf 2

Given :  \sf  log_{a}( log_{3}( log_{2}(512) ) )=1

To find : The value of a

Tip :

Formula to be used

 \sf{1.  \:  \: \:  log( {a}^{n} ) = n log(a)  }

 \sf{2. \:  \:  log(ab) =  log(a)   +  log(b) }

 \displaystyle \sf{3. \:  \:  log \bigg( \frac{a}{b}  \bigg)  =  log(a) -  log(b)  }

 \sf{4. \:  \:   log_{a}(a)   = 1}

Solution :

Step 1 of 2 :

Write down the given equation

The given equation is

\sf  log_{a}( log_{3}( log_{2}(512) ) )= 1

Step 2 of 2 :

Simplify the given expression

We simplify the given expression as below

 \sf log_{a}( log_{3}( log_{2}(512) ) )=1

 \sf \implies log_{a}( log_{3}( log_{2}( {2}^{9} ) ) ) =1

 \sf  \implies log_{a}( log_{3}(9 log_{2}( {2}^{} ) ) ) =1

 \sf \implies log_{a}( log_{3}(9  \times 1 ) )=1

 \sf \implies log_{a}( log_{3}(9 ) )=1

 \sf \implies log_{2}( log_{3}( {3}^{2}  ) )=1

 \sf \implies log_{a}( 2log_{3}( {3}^{}  ) )=1

 \sf  \implies log_{a}( 2 )=1

 \sf \implies a=2

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if 2log x base y=6,then the relation between x and y

https://brainly.in/question/27199002

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Similar questions