Math, asked by shreyashshinde3699, 7 months ago

if log (a square ×b cube)- log(a cube÷a square)​

Answers

Answered by souvikghosh738
2

Step-by-step explanation:

log(a²*b³)-log(a³/a²)

=log(a²*b³)-log a

=log(a²*b³/a)

=log(a*b³)

=log a+log b³

=log a+3log b

Answered by Anonymous
2

 \rm  \underline{ \red{\large{ question}}}

  :  \implies\rm log( {a}^{2} \times  {b}^{3}  )  -  log( {a}^{3}   \div  a {}^{2} )

\rm  \underline{ \red{\large{ solution}}}

  :  \implies\rm log( {a}^{2} \times  {b}^{3}  )  -  log( {a}^{3}   \div  a {}^{2} )

  \rm :  \implies \:  log( { a}^{2}  {b}^{3} )  -  log(  \dfrac{ {a}^{3} }{ {a}^{2} } )

 \rm :  \implies \:  log( { a}^{2}  {b}^{3} )  -  log(  { {a}^{} }{ {}^{} } )

Using this property

  \boxed{\rm \:  log( \dfrac{x}{y} )  =  log(x)  -  log(y) }

We get

\rm :  \implies \:  log( { a}^{2}  {b}^{3} )  -  log(  { {a}^{} }{ {}^{} } )

 :  \implies \rm \:  log( \dfrac{ {a}^{2} b {}^{3} }{a} )

 \rm :  \implies log(a {b}^{3} )

\rm  \underline{ \red{\large{ answer}}}

\rm :  \implies \boxed{ \rm log(a {b}^{3} ) }

Similar questions