Math, asked by prabirchakraborty185, 9 months ago

If log b base a =10 and log 32 b base 6a = 5 then calculate the value of a​

Answers

Answered by devikalyani354
1

Answer:

a^{2} = b

(6a)^{5} = 32b

Therefore,

(6a)^{5} = 32 a^{10}

6^{5} = 2^{5} a^{5}

2a=6

a=3

Answered by srushti04
0

answer:

10

answer with explanation:

log (b base a)=10

=logf (32b) base6aj=5

log32b/log6a=5

>log32b=5log6a

=> log32b=5log6a

->log32logb=5log6+5loga

5log2-5log6=5loga-logb

=> 5log2-5log2-5log3-5loga-logb

=5log3=logb-5loga

>5log3-logb-loga- 4loga

5log3-log (b base a) -4loga

=>5log3-10=-4loga

=>10-5log3=4loga

=>(10-5log3)/4=loga

a=10[(10-5log3)/4]

Now, 5log3 have base 10

Similar questions