Math, asked by paravesh, 1 year ago

If log b^y=3+n log b^x.so prove that y= b^3×x^n.? Or
Or_if log_{b}(y) = 3 + n log_{b}(x).so \: prove \: that \: y = {b }^{3 } \times {x}^{n} = what

Answers

Answered by Bogame
1
log(b)y = 3+ n log(b)x
log (b) y - log (b) x^n = 3
log (b) (y /x^n) = 3
b^3 = y/x^n
thus y = b^3 x x^n
Similar questions