Math, asked by PBHAVYA, 3 months ago

if log base 2 x +log base 4x +log base 16 x=21/4 ,then x =​

Answers

Answered by singhmayank1582
0

Answer:

We know that log

a

n

N=

n

1

log

a

N.

Now,

log

2

x+log

4

x+log

16

x=

4

21

⇒log

2

x+log

2

2

x+log

2

4

x=

4

21

⇒log

2

x+

2

1

log

2

x+

4

1

log

2

x=

4

21

,

⇒(1+

2

1

+

4

1

)log

2

x=

4

21

4

7

log

2

x=

4

21

⇒log

2

x=3

Hence, x=2

3

=8

Answered by gopalpvr
0

Answer:

 log_{2}(x)  +   log_{4}(x)  +  log_{16}(x)  =  \frac{21}{4}

 log_{2}(x)  +   log_{ {2}^{2} }(x)  +  log_{ {2}^{4} }(x)  =  \frac{21}{4}

 log_{2}(x)  +   log_{2}( {x}^{ \frac{1}{2} } )  +  log_{2}( {x}^{ \frac{1}{4} } )  =  \frac{21}{4}

 log_{2}( {x}^{1 +  \frac{1}{2} +  \frac{1}{4}  } )  = \frac{21}{4}

 {x}^{ \frac{7}{4} }  =  {2}^{ \frac{21}{4} }

 {x}^{ \frac{7}{2} }  =  {8}^{ \frac{7}{2} }

x = 8

Similar questions