Math, asked by arun9015, 11 months ago

if log(base10)x-log(base10)y=1 and x+y=11 then find x​

Answers

Answered by MaheswariS
4

\underline{\textbf{Given:}}

\mathsf{log\,_{10}x-log\,_{10}y=1\;\;and\;\;x+y=11}

\underline{\textbf{To find:}}

\textsf{The value of x}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{log\,_{10}x-log\,_{10}y=1}

\textsf{By quotient rule of logarithm, we can write}

\mathsf{log\,_{10}\left(\dfrac{x}{y}\right)=1}

\implies\mathsf{\dfrac{x}{y}=10}\;\;\;\mathsf{(\because\;log\,_aa=1)}

\implies\mathsf{x=10y}

\mathsf{x+y=11}

\implies\mathsf{10y+y=11}

\implies\mathsf{11y=11}

\implies\mathsf{y=1}

\mathsf{Put\;y=1\;in\;x+y=11}

\implies\mathsf{x+1=11}

\implies\mathsf{x=11-1}

\implies\boxed{\mathsf{x=10}}

\therefore\textbf{The value of x is 10}

\underline{\textbf{Quotient rule:}}
\boxed{\begin{minipage}{5cm}$\\\mathsf{log\,_aM-log\,_aN=log\,_a\left(\dfrac{M}{N}\right)}\\$\end{minipage}}


#SPJ3
Similar questions