Math, asked by brevonnunes, 1 year ago

If log --> = log Vox + los dos
show that (x+ y)2 = 20 xy​

Attachments:

Answers

Answered by HappiestWriter012
9

Question : If  log( \frac{x - y}{4} )  =  log( \sqrt{x} )  +  log( \sqrt{y} )

Show that,  {(x + y) }^{2}  = 20xy

Solution :

 log( \frac{x - y}{4} )  =  log( \sqrt{x} )  +  log( \sqrt{y} )  \\  \\ log( \frac{x - y}{4} ) =  log( \sqrt{x} \times  \sqrt{y}  )  \\  \\  log( \frac{x - y}{4} ) =  log(  \sqrt{xy}  )  \\  \\  ( \frac{x - y}{4})  =  \sqrt{xy}  \\  \\

Squaring on both sides,

(x - y) ^{2}  =( 4 \sqrt{xy} ) ^{2}  \\  \\   {x}^{2}  +  {y}^{2}  - 2xy = 16xy \\  \\  {x}^{2}  +  {y}^{2}  = 18xy \\  \\  {x}^{2}  +  {y}^{2}  + 2xy = 18xy + 2xy \\  \\  {(x + y)}^{2}  = 20xy

Hence proved that If  log( \frac{x - y}{4} )  =  log( \sqrt{x} )  +  log( \sqrt{y} )

then,  {(x + y) }^{2}  = 20xy

Answered by Anonymous
9

Question :-

If {(x - y)/4} = log√x + log√y, show that (x + y)² = 20xy.

Solution :-

 \sf  log\bigg( \dfrac{x - y}{4} \bigg) = log \sqrt{x}  + log \sqrt{y}  \\  \\

 \sf   \implies log\bigg( \dfrac{x - y}{4} \bigg) = log \sqrt{x}( \sqrt{y} ) \\  \\

  \bf \fbox{ \because log \ a + log \ b = log \ ab} \\  \\

 \sf \implies log  \bigg( \dfrac{x - y}{4} \bigg) = log \sqrt{xy}   \\  \\

Cancelling log on both sides

 \sf \implies \bigg( \dfrac{x - y}{4} \bigg) =  \sqrt{xy}   \\  \\

 \sf \implies x - y =  4\sqrt{xy}   \\  \\

Squaring on both sides

 \sf \implies (x - y)^2 =   (4\sqrt{xy})^2 \\  \\

 \sf \implies (x - y)^2 =16xy \\  \\

Expanding LHS

 \sf \implies x^2 +  {y}^{2}   - 2xy=16xy \\  \\

 \sf \implies x^2 +  {y}^{2} =16xy + 2xy \\  \\

 \sf \implies x^2 +  {y}^{2} =18xy \\  \\

Adding 2xy on both sides

 \sf \implies x^2 +  {y}^{2}  + 2xy=18xy + 2xy \\  \\

 \sf \implies (x + y)^2 =20xy \\  \\

 \bf  \fbox{\because x^2 +  {y}^{2}  + 2xy= {(x + y)}^{2} } \\  \\

Hence shown

Similar questions