Math, asked by shyam80088, 2 months ago

If log( log y) =xlog x + log( log x)then the value of dy/dx is

Answers

Answered by LivetoLearn143
2

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: log(logy) = xlogx +  log(logx)

Now, Differentiate both sides with respect to x,

\rm :\longmapsto\: \dfrac{d}{dx} log(logy) =\dfrac{d}{dx}( xlogx +  log(logx) )

We know that

\boxed{ \sf{ \: \dfrac{d}{dx}(u + v) = \dfrac{d}{dx}u + \dfrac{d}{dx}v}}

and

\boxed{ \sf{ \: \dfrac{d}{dx}logx =  \frac{1}{x}}}

\rm :\longmapsto\:  \dfrac{1}{logy} \dfrac{d}{dx}(logy) =\dfrac{d}{dx}xlogx + \dfrac{d}{dx} log(logx)

We know that

\boxed{ \sf{ \: \dfrac{d}{dx}(uv) = u\dfrac{d}{dx}v + v\dfrac{d}{dx}u}}

\rm :\longmapsto\:  \dfrac{1}{logy} \dfrac{1}{y} \dfrac{dy}{dx}=x\dfrac{d}{dx}logx  + logx\dfrac{d}{dx}x+  \dfrac{1}{logx} \dfrac{d}{dx}(logx)

\rm :\longmapsto\:  \dfrac{1}{logy} \dfrac{1}{y} \dfrac{dy}{dx}=x \times \dfrac{1}{x} + logx  \dfrac{1}{logx} \times  \dfrac{1}{x}

\rm :\longmapsto\:  \dfrac{1}{ylogy}  \dfrac{dy}{dx}=1 + logx  + \dfrac{1}{xlogx}

\rm :\longmapsto\:\dfrac{dy}{dx}=y \: logy \:  \bigg(1 + logx  + \dfrac{1}{xlogx} \bigg)

More to know :-

\boxed{ \sf{ \: \dfrac{d}{dx}x = 1}}

\boxed{ \sf{ \: \dfrac{d}{dx}k = 0}}

\boxed{ \sf{ \: \dfrac{d}{dx} {e}^{x}  =  {e}^{x} }}

\boxed{ \sf{ \: \dfrac{d}{dx} {a}^{x}  =  {a}^{x} log(a)  }}

Similar questions