If log(p+q/3)=1/2(log p + log q) prove that p² + q² =7pq
Answers
If log[(p+q)/3]=1/2(log p + log q) then p² + q² is equal to 7pq.
Step-by-step explanation:
Required logarithm identities:
- log (ab) = log a + log b
- log aᵇ = b log a
We are given
log[(p+q)/3] = ½[log p + log q]
Let’s solve the R.H.S first :-
½[log p + log q]
using identity (1)
= ½ * [log (pq)]
Using identity (2)
= log [(pq)^(1/2)] ……. (i)
Now, we will equate L.H.S = R.H.S as given in the question i.e.,
log[(p+q)/3] = ½[log p + log q]
substituting the value of R.H.S from eq. (i)
⇒ log[(p+q)/3] = log [(pq)^(1/2)]
cancelling log from both sides
⇒ (p+q)/3 = √[pq]
⇒ p + q = 3 * √(pq)
squaring both sides
⇒ (p +q)² = [3 * √(pq)]²
⇒ p² + 2pq + q² = 9pq
⇒ p² + q² = 9pq – 2pq
⇒ p² + q² = 7pq
Hence proved
---------------------------------------------------------------------------------------
Also View:
Answer this logarithm problem
https://brainly.in/question/2263417
Answer the logarithm question
https://brainly.in/question/2199779