If log sin(x + iy) = a + ib. prove that
1) 2e2a = cosh 2y
cosh 2y -- cos 2x
11) tan b = cotx
tan hy
Answers
Answered by
6
Answer:
sorry I didn't know that answer
Answered by
3
ta [cot x tan hy]
Explanation:
we know that,
sin (A +B) = sin Acos B + cos A sinB
Given function = log sin (x + iy)
log [sin x cos iy + sin iy cos x
and,
sin (x + iy) = sin x cos(iy) + cos x sin iy
we know that,
cosh x = cos (ix) and
sinh x = -i sin (ix),
tan hx = -itan (ix)
⇒sin (x + iy) = sin x cosh x + cos x (i)(sinh x)
= sin x cosh x + i (cos x sinh x)
∴ log [sin (x + iy)] = log [sin x cosh y + icos x sinh y}
cos (ix) = cosh x;
sin (ix) = i sinh x
log (sin (x + iy)) = 1/2 log [sin²x cos²hy + cos²x sinhy] + i tan”! [ cot x tan hy]
Imaginary part is
ta [cot x tan hy]
Similar questions