Math, asked by Bharath321, 10 months ago

if log tan A+log tan B=0 then find log sin(A+B) where A and B are acute angles

Answers

Answered by MaheswariS
4

\textbf{Given:}

log\,tanA+log\,tanB=0

\text{Using product rule of logarithm}

log\,(tanA\,tanB)=0

\implies\;tanA\,tanB=1

\implies\;1-tanA\,tanB=0

\text{Now,}

tan(A+B)=\displaystyle\frac{tanA+tanB}{1-tanA\,tanB}

tan(A+B)=\displaystyle\frac{tanA+tanB}{0}

tan(A+B)=\infty

\implies\;A+B=90^{\circ}

\text{consider}

log\,sin(A+B)

=log\,sin90^{\circ}

=log\,1

=0

\therefore\boxed{\bf\,log\,sin(A+B)=0}

Similar questions