Math, asked by sdsk11972, 4 months ago

if log(x^2 y^2)=9,log(x/y)=2 show that log x=3 log y=1​

Answers

Answered by bson
2

Step-by-step explanation:

log (xy)² = 8

2 (log x + log y) = 8

log x+ log y = 4 --A

log x- log y =2 --B

A+B

2 logx = 6

log x= 6/2 = 3

A-B

2logy = 2

log y = 1

for log x =3, log y= 1 then log (x²y²) should be = 8

Answered by MagicalBeast
6

Correct question :

If log(x² y²) = 8 , log(x/y)=2 show that log x=3 log y=1

Given :

  • log(x²y²) = 8
  • log(x/y) = 2

To prove :

  • log(x) = 3
  • log(y) = 1

Formula used :

\sf \bullet \:  \:  log( {a}^{m} )  =  \: m\times  log(a )  \\  \\ \sf \bullet  \:  \: log( \dfrac{a}{b} )  \:  =  \:  log(a)  -  log(b)  \\  \\ \sf \bullet \:  \:  log(ab)  =  log(a)  +  log(b)

Solution :

  • log(x²y²) = 8

➝ log(x²) + log(y²) = 8

➝ 2 log(x) + 2 log(y) = 8

➝ 2{ log(x) + log(y) } =

➝ log(x) + log(y) = 8/2

➝ log(x) + log(y) = 4 ...... equation 1

_______________________________________________

\sf \bullet \:  \:   log( \dfrac{x}{y} )  \: =  \:  2 \:  \\  \\  \sf \implies \:  \:  log(x )  \:  -  \:  log(y)  \:  = 2  .......equation2

_______________________________________________

On adding equation 1 & 2 , we get;

➝ { log(x) + log(y) } + { log(x) - log(y) } = 4 + 2

➝ log(x) + log(x) + log(y) - log(y) = 6

➝ 2 log(x) = 6

➝ log(x) = 6/2

log(x) = 3

_______________________________________________

On putting value of " log(x) " in equation 2 we get;

➝ 3 - log(y) = 2

➝ log(y) = 3 - 2

log(y) = 1

_______________________________________________

  • log(x) = 3
  • log(y) = 1

HENCE PROVED

Similar questions