if log(x^2 y^2)=9,log(x/y)=2 show that log x=3 log y=1
Answers
Step-by-step explanation:
log (xy)² = 8
2 (log x + log y) = 8
log x+ log y = 4 --A
log x- log y =2 --B
A+B
2 logx = 6
log x= 6/2 = 3
A-B
2logy = 2
log y = 1
for log x =3, log y= 1 then log (x²y²) should be = 8
Correct question :
If log(x² y²) = 8 , log(x/y)=2 show that log x=3 log y=1
Given :
- log(x²y²) = 8
- log(x/y) = 2
To prove :
- log(x) = 3
- log(y) = 1
Formula used :
Solution :
- log(x²y²) = 8
➝ log(x²) + log(y²) = 8
➝ 2 log(x) + 2 log(y) = 8
➝ 2{ log(x) + log(y) } =
➝ log(x) + log(y) = 8/2
➝ log(x) + log(y) = 4 ...... equation 1
_______________________________________________
_______________________________________________
On adding equation 1 & 2 , we get;
➝ { log(x) + log(y) } + { log(x) - log(y) } = 4 + 2
➝ log(x) + log(x) + log(y) - log(y) = 6
➝ 2 log(x) = 6
➝ log(x) = 6/2
➝ log(x) = 3
_______________________________________________
On putting value of " log(x) " in equation 2 we get;
➝ 3 - log(y) = 2
➝ log(y) = 3 - 2
➝ log(y) = 1
_______________________________________________
- log(x) = 3
- log(y) = 1
HENCE PROVED