If log (x - 9) + log x= 1, then x=
Attachments:
Answers
Answered by
13
Solution :-
⇒ log (x - 9) * x = 1
[ Because log a + log b = log ab ]
⇒ log (x² - 9x) = 1
⇒ log (x² - 9x) = 1
Here we will assume the base as 10
⇒ log₁₀ (x² - 9x) = 1
⇒ log₁₀ (x² - 9x) = log₁₀ 10
[ Because 1 = logₓ x = 1 ]
Eliminating log on both sides
⇒ x² - 9x = 10
⇒ x² - 9x - 10 = 0
Splitting the middle term
⇒ x² - 10x + x - 10 = 0
⇒ x(x - 10) + 1(x - 10) = 0
⇒ (x + 1)(x - 10) = 0
⇒ x + 1 = 0 or x - 10 = 0
⇒ x = - 1 or x = 10
x ≠ - 1 since log of negative value is undefined
⇒ x = 10
Therefore the value of x is 10.
Similar questions