Math, asked by AakarshMittal, 1 year ago

if log x to the base 3 is equal to a and log x to the base 7 is equal to b then find log x to the base 21​

Answers

Answered by Anonymous
4

HEYA \:  \\  \\  \\  log_{3}(x)  = a \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \: \:  log_{7}(x)  = b \\  \\ 1 \div ( log_{x}(3) ) = a  \\and \\ 1 \div (log_{x}(7) ) = b \:  \:  \:  \:  \: by \: using \: base \: change \: formula \:  \\  \\  log_{x}(3)  = 1 \div a \:  \:  \:  \: .....(i) \\  \\  log_{x}(7)  = 1 \div b \:  \:  \:  \: .....(ii) \\  \\ add \: both \: the \: equations \: we \: have \\  \\  log_{x}(3)  +  log_{x}(7)  =  (a + b) \div ab \\  \\  log_{x}(7 \times 3)  = (a + b) \div ab \\  becoz \:  \:  log(m)  +  log(n)  =  log(m \times n) \\   \\ log_{x}(21)  = (a + b) \div ab \\  \\  log_{21}(x)  = (ab) \div (a + b)

Similar questions