If log (x-y/2)=1/2 (log x + log y - log z), then find the value of x/y + y/x
Answers
Answered by
0
log(x-y/2)=log((xy/z)^{1/2})
compare
x-y/2=(xy/z)^{1/2}
compare
x-y/2=(xy/z)^{1/2}
Answered by
2
㏒ {} = (㏒ x + ㏒ y - ㏒ z)
2㏒ {} = ㏒ x + ㏒ y - ㏒ z
㏒ = ㏒
Remove ㏒ on both sides,
=
(x²+y²-2xy)/4 = xy/z
(x²+y²-2xy)/xy = 4/z
x²/xy + y²/xy - 2xy/xy = 4/z
x/y + y/x - 2 = 4/z
x/y + y/x = 4/z + 2
x/y + y/x = (4+2z)/z
------------------------
If your question is,
If log (x-y/2)=1/2 (log x + log y), then find the value of x/y + y/x
Then this is the answer.
㏒ {} = (㏒ x + ㏒ y)
2㏒ {} = ㏒ x + ㏒ y
㏒ = ㏒ xy
Remove ㏒ on both sides,
= xy
(x²+y²-2xy)/4 = xy
(x²+y²-2xy)/xy = 4
x²/xy + y²/xy - 2xy/xy = 4
x/y + y/x - 2 = 4
x/y + y/x = 4+2
x/y + y/x = 6
------------------------
Hope it helps
2㏒ {} = ㏒ x + ㏒ y - ㏒ z
㏒ = ㏒
Remove ㏒ on both sides,
=
(x²+y²-2xy)/4 = xy/z
(x²+y²-2xy)/xy = 4/z
x²/xy + y²/xy - 2xy/xy = 4/z
x/y + y/x - 2 = 4/z
x/y + y/x = 4/z + 2
x/y + y/x = (4+2z)/z
------------------------
If your question is,
If log (x-y/2)=1/2 (log x + log y), then find the value of x/y + y/x
Then this is the answer.
㏒ {} = (㏒ x + ㏒ y)
2㏒ {} = ㏒ x + ㏒ y
㏒ = ㏒ xy
Remove ㏒ on both sides,
= xy
(x²+y²-2xy)/4 = xy
(x²+y²-2xy)/xy = 4
x²/xy + y²/xy - 2xy/xy = 4
x/y + y/x - 2 = 4
x/y + y/x = 4+2
x/y + y/x = 6
------------------------
Hope it helps
Similar questions
Math,
8 months ago
Social Sciences,
8 months ago
English,
1 year ago
Sociology,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago