Math, asked by madhuryaputta1, 2 months ago

if log {x+y/3}=1/2(log x+ log y), then find the value of x/y+ y/x​

Answers

Answered by varadad25
4

Answer:

\displaystyle{\boxed{\red{\sf\:\dfrac{x}{y}\:+\:\dfrac{y}{x}\:=\:7\:}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:\log\:\left(\:\dfrac{x\:+\:y}{3}\:\right)\:=\:\dfrac{1}{2}\:(\:\log\:x\:+\:\log\:y\:)}

We have to find the value of

\displaystyle{\sf\:\dfrac{x}{y}\:+\:\dfrac{y}{x}}

Now,

\displaystyle{\sf\:\log\:\left(\:\dfrac{x\:+\:y}{3}\:\right)\:=\:\dfrac{1}{2}\:(\:\log\:x\:+\:\log\:y\:)}

\displaystyle{\implies\sf\:2\:\log\:\left(\:\dfrac{x\:+\:y}{3}\:\right)\:=\:\log\:x\:+\:\log\:y}

\displaystyle{\implies\sf\:\log\:\left[\:\left(\:\dfrac{x\:+\:y}{3}\:\right)^2\:\right]\:=\:\log\:x\:+\:\log\:y\:\qquad\cdots[\:k\:.\log_a\:b\:=\:\log_a\:b^k\:]}

\displaystyle{\implies\sf\:\log\:\left[\:\left(\:\dfrac{x\:+\:y}{3}\:\right)^2\:\right]\:=\:\log\:(\:xy\:)}

\displaystyle{\implies\sf\:\left(\:\dfrac{x\:+\:y}{3}\:\right)^2\:=\:xy}

\displaystyle{\implies\sf\:\dfrac{(\:x\:+\:y\:)^2}{3^2}\:=\:xy}

\displaystyle{\implies\sf\:\dfrac{x^2\:+\:2xy\:+\:y^2}{9}\:=\:xy}

\displaystyle{\implies\sf\:x^2\:+\:y^2\:+\:2xy\:=\:9\:xy}

\displaystyle{\implies\sf\:x^2\:+\:y^2\:=\:9xy\:-\:2xy}

\displaystyle{\implies\sf\:x^2\:+\:y^2\:=\:7xy}

\displaystyle{\implies\sf\:\dfrac{x^2\:+\:y^2}{xy}\:=\:\dfrac{7\:\cancel{xy}}{\cancel{xy}}\qquad\cdots[\:Dividing\:by\:xy\:]}

\displaystyle{\implies\sf\:\dfrac{x^2}{xy}\:+\:\dfrac{y^2}{xy}\:=\:7}

\displaystyle{\implies\sf\:\dfrac{x\:\times\:\cancel{x}}{\cancel{x}\:y}\:+\:\dfrac{y\:\times\:\cancel{y}}{x\:\cancel{y}}\:=\:7}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:\dfrac{x}{y}\:+\:\dfrac{y}{x}\:=\:7\:}}}}

Answered by Anonymous
4

Answer:

  • : \implies  \frac{x}{y}  +  \frac{y}{x}  = 7 \\

Step-by-step explanation:

Given,

  •  log( \frac{x + y}{3} )  =  \frac{1}{2} ( log \: x + log \: y)

To Find,

  • The \:   \: value \:  \:  of \:  \:  \frac{x}{y}  +  \frac{y}{x} .

Solution,

: \implies  log( \frac{x + y}{3} )  =  \frac{1}{2} ( log \: x + log \: y) \\  \\ : \implies 2 \: log( \frac{x + y}{3} ) = 2 \times  \frac{1}{2} (log \: x + log \: y) \\  \\ : \implies 2 \: log ( \frac{x + y}{3} ) = log \: x + log \: y \\  \\ : \implies  log( {( \frac{x + y}{3}) }^{2} )  = log ( x  y) \\  \\  : \implies  {( \frac{x + y}{3} )}^{2}  = xy \\  \\ : \implies  \frac{(x + y) ^{2} }{9}  = xy \\  \\ : \implies  {x}^{2}  + 2xy +  {y}^{2}  = 9xy \\  \\ : \implies  {x}^{2}  +  {y}^{2}  = 7xy \\  \\ : \implies  \frac{ {x}^{2}  +  {y}^{2} }{xy}  =  \frac{7xy}{xy}  \:  \:  \:  \:  \:  ...(dividing \: both \: side \: by \: xy) \\  \\ : \implies  \frac{ {x}^{2} }{xy}  +  \frac{ {y}^{2} }{xy}  = 7 \\  \\ : \implies  \frac{x}{y}  +  \frac{y}{x}  = 7

Required Answer,

  • : \implies  \frac{x}{y}  +  \frac{y}{x}  = 7 \\

Similar questions