Math, asked by ethateja123, 1 year ago

If Log (x+y)/3=1/2(logx+log4) find the volume x/y+y/x

Answers

Answered by Anonymous
16

\textbf{Answer}

7
OR

343

Depend on question


\textbf{Correction}

or it is may be Y not 4
it is Value in place of volume (?)


\textbf{Otherwise}

 { (\frac{x}{y} + \frac{y}{x}) }^{3}


\textbf{Step-By-Step Solution}


\textbf{Step.1}

 log \frac{x + y}{3} = \frac{1}{2} log(x) + log(y)


\textbf{Step.2}

2( log( \frac{x + y}{3} ) ) = log(x) + log(y)


\textbf{Step.3}

\textbf{Using log theorm}

n log(x) = log( {x}^{n} )
 log( { (\frac{x + y}{3} )}^{2} ) = log(x )+ log(y)


\textbf{Step.4}

 log(x) + log(y) = log(xy)

\textbf{Therefore}

 log( {( \frac{x + y}{3}) }^{2} ) = log(xy)


\textbf{Step.5}

Cancel log both side

 { \: (\frac{x + y}{3} )}^{2} = xy


\textbf{Step.6}

 \frac{ {(x + y)}^{2} }{9} = xy


\textbf{Step.7}

 {x}^{2} + {y}^{2} + 2xy = 9xy


\textbf{Step.8}

 {x }^{2} + {y}^{2} = 7xy


\textbf{Step.9}

Divide the all by \textbf{xy}

 \frac{x}{y} + \frac{y}{x} = 7

Now if your questions is cube of this value

then , ans is

 = { (\frac{x}{y} + \frac{y}{x}) }^{3} = {7}^{3}

 {( \frac{x}{y} + \frac{y}{x} )}^{3} = 343
Similar questions