Social Sciences, asked by Monya7471, 1 year ago

If, log(x+y)/log2 = log(x–y)/log3 = log64/log0.125, find the values of x and y.

Answers

Answered by topwriters
7

x = 22.63

y = 0.82

Explanation:

log(x+y)/log2 = log(x–y)/log3 = log64/log0.125

Taking each term separately, we get:

log(x+y)/log2 = log x + log y - log 2

log(x–y)/log3 = log x - log y - log 3

log64/log0.125 = log64 - log0.125  

log(x–y)/log3 = log64/log0.125  

log x - log y - log 3 - log 64 + log 0.125 = 0

log x + log y - log 2 - log 64 + log 0.125 = 0

log x - log y  = log 3 + log 64 - log 0.125 ----------(1)

log x + log y = log 2 + log 64 - log 0.125----------(2)

2 log x = log 3 + log 2 + 2 log 64 - 2 log 0.125 -------------------- Adding (1) & (2)

-2 log y = log 3 - log 2 ----------------Subtracting (2) from (1)

log y² = log 2 - log 3 = log (2/3)

y² = 2/3

y = root of (2/3) = 0.82

2 log x = log 3 + log 2 + log 64 - log 0.125= log (3*2*64/0.125) = log 512

log x² = log 512

So x² = 512.

x = root of 512 = 22.63

Answered by kalaana263
8

Answer:

x=13/72

y=5/72

Explanation:

log 64/log 0.125

=>6 log 2/3 log (5/10)

=>2log 2/log (5/10)

=>2 log 2/log 5-log 5-log 2

=>2log 2/-log 2

=>-2

so log 64/ log 0.125 =-2

=>log (a+b)/log 2 =-2

=>log (a+b)=-2 log 2

=>log (a+b)= log (1/4)

=>a+b= 1/4 ..... (1)

,

=>log (a-b)/ log 3=-2

=>log (a-b) = -2 log 3

=>log (a-b) = log (1/9)

=>a-b= 1/9...(2)

from adding eq (1) and (2)

a+b= (1/4)

a-b= (1/9)

+---------------

=>2a=(1/4)+(1/9)

=>2a=13/36

=> a=13/72

from eq (1) we know that

a+b= 1/4

=>(13/72)+b=1/4

=>b=(1/4)-(13/72)

=>b=5/72

so a =13/72 and b =5/72 ANSWER...

Similar questions