Math, asked by sandhyamahilane1379, 1 year ago

If log(x2+y2)=2tan-1(y/x), then show that dy/dx=x+y/x-y.

Answers

Answered by SunilChoudhary1
75
here is your answer.....
Attachments:
Answered by presentmoment
33

\bold{\frac{d y}{d x}=\frac{x+y}{x-y} \text { if } \log \left(x^{2}+y^{2}\right)=2 \tan ^{-1} \frac{y}{x}}

Given:  

\log \left(x^{2}+y^{2}\right)=2 \tan ^{-1} \frac{y}{x}

To Prove:

\frac{d y}{d x}=\frac{x+y}{x-y}

Solution:  

\log \left(x^{2}+y^{2}\right)=2 \tan ^{-1} \frac{y}{x}

We need to find the derivative of y with respect to x.  

Differentiating with respect to x on both sides.  

\log \left(x^{2}+y^{2}\right)=2 \tan ^{-1} \frac{y}{x}

\frac{1}{x^{2}+y^{2}}\left(2 x+2 y\left(\frac{d y}{d x}\right)\right)=\frac{2\left(\frac{x\left(\frac{d y}{d x}\right)-y(1)}{x^{2}}\right)}{\left(1+\frac{y^{2}}{x^{2}}\right)}

Where we know that \frac{dy}{dx} =y_1

\frac{2\left(x+y y_{1}\right)}{x^{2}+y^{2}}=\frac{2\left(x y_{1}-y\right)}{x^{2}+y^{2}}

Cancelling x^2+y^2 on both sides and multiplying 2 we get  

2 x+2 y y_{1}=2 x y_{1}-2 y

Cancelling out 2 on both sides  

\begin{array}{l}{x+y y_{1}=x y_{1}-y} \\ {x+y=x y_{1}-y y_{1}}\end{array}

Shifting the term which has y_1 on one side  

\begin{array}{l}{x+y=y_{1}(x-y)} \\ {y_{1}=\frac{x+y}{x-y}}\end{array}

Substituting \frac{d y}{d x}=y_{1}

\bold{\frac{d y}{d x}=\frac{x+y}{x-y}}

Hence proved.

Similar questions