Math, asked by tulsihelli, 3 months ago

If log x2 + y2
= tan-1
dy
then show that
dx
y-
ytx​

Answers

Answered by mathdude500
2

Correct Statement :-

 \sf \:If \: log( {x}^{2} +  {y}^{2}) = 2 {tan}^{ - 1}\dfrac{y}{x} \: then \: show \: \dfrac{dy}{dx} = \dfrac{x + y}{x - y}

Solution :-

Formula Used :-

\boxed{ \red{\bf{\dfrac{d}{dx} log(x) = \dfrac{1}{x}}}}

\boxed{ \red{\bf{\dfrac{d}{dx} {tan}^{ - 1}x = \dfrac{1}{ {x}^{2} + 1 }}}}

\boxed{ \red{\bf{\dfrac{d}{dx} {x}^{2} = 2x }}}

\boxed{ \red{\bf{\dfrac{d}{dx}\dfrac{u}{v} = \dfrac{v\dfrac{d}{dx}u - u\dfrac{d}{dx}v}{ {v}^{2} }  }}}

Let's solve the problem now!!

\rm :\longmapsto\:log( {x}^{2} +  {y}^{2}) = 2 {tan}^{ - 1}\dfrac{y}{x}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}log( {x}^{2} +  {y}^{2}) = 2\dfrac{d}{dx} {tan}^{ - 1}\dfrac{y}{x}

 \rm :\longmapsto\:\: \dfrac{1}{ {x}^{2}+{y}^{2}}\dfrac{d}{dx}( {x}^{2}+{y}^{2}) =2 \dfrac{1}{1 + \dfrac{ {y}^{2} }{ {x}^{2}}}\dfrac{d}{dx}\dfrac{y}{x}

\rm\:\dfrac{1}{ \cancel{{x}^{2} +  {y}^{2}}}(2x + 2y\dfrac{dy}{dx}) =2 \dfrac{ \cancel {x}^{2} }{ \cancel{{x}^{2}+{y}^{2}}}\bigg(\dfrac{x\dfrac{d}{dx}y - y\dfrac{d}{dx}x}{ \cancel{x}^{2}}\bigg)

\rm :\longmapsto\: \cancel2(x + y\dfrac{dy}{dx}) =  \cancel2(x\dfrac{dy}{dx} - y)

\rm :\longmapsto\:x + y\dfrac{dy}{dx} = x\dfrac{dy}{dx} - y

\rm :\longmapsto\:x  + y  =  x\dfrac{dy}{dx} - y\dfrac{dy}{dx}

\rm :\longmapsto\:x  + y  =  (x - y)\dfrac{dy}{dx}

\bf\implies \:\dfrac{dy}{dx} = \dfrac{x + y}{x - y}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

\boxed{ \red{\bf{\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}}

\boxed{ \red{\bf{\dfrac{d}{dx}k = 0}}}

\boxed{ \red{\bf{\dfrac{d}{dx}x = 1}}}

\boxed{ \red{\bf{\dfrac{d}{dx}sinx = cosx}}}

\boxed{ \red{\bf{\dfrac{d}{dx}cosx =  - sinx}}}

\boxed{ \red{\bf{\dfrac{d}{dx}tanx =  {sec}^{2} x}}}

\boxed{ \red{\bf{\dfrac{d}{dx}cotx =  { - cosec}^{2} x}}}

\boxed{ \red{\bf{\dfrac{d}{dx}secx = secxtanx}}}

\boxed{ \red{\bf{\dfrac{d}{dx}cosecx =  - cosecx \: cotx}}}

Similar questions