Math, asked by PalakKharbanda, 2 months ago

If log y = tan-¹ x,
Show that (1 + x²) d²y/dx² + (2x-1) dy/dx = 0​

Answers

Answered by King412
44

 \\   \red{\bigstar \:  \large \underline{ \underline{\bold{Given:- }}}} \\

  • \sf \:    \log \: y =  { \tan}^{ - 1} x

 \\   \purple{\bigstar \:  \large \underline{ \underline{\bold{To \:  Show :- }}}} \\

  •    \sf \: (1 +  {x}^{2} ) \dfrac{ {d}^{2}y }{d {x}^{2} }  + (2x - 1) \dfrac{dy}{dx}  = 0

 \\   \bigstar \:  \large \underline{ \underline{\bold{Solution:- }}} \\

\sf \:    \log \: y =  { \tan}^{ - 1} x

Now, Differentiating w.r.t. x, We get

 \\  \sf \:  \frac{1}{y}  \times  \frac{dy}{dx}  =  \frac{1}{1 +  {x}^{2} }  \\

 \\  \sf \:  \:  \:  \:  \implies \dfrac{(1 +  {x}^{2} )}{y} \times  \frac{dy}{dx}   = 0

 \\  \sf \:  \:  \:  \:  \implies {(1 +  {x}^{2} )} \times  \frac{dy}{dx}   = y

 \\  \sf \:  \:  \:  \:  \implies {(1 +  {x}^{2} )} \times  \frac{ {d}^{2} y}{d {x}^{2} }    + 2x \frac{dy}{dx} =  \frac{dy}{dx}  \\

 \\  \sf \:  \:  \:  \:  \implies {(1 +  {x}^{2} )} \times  \frac{ {d}^{2} y}{d {x}^{2} }    + (2x - 1) \bigg( \frac{dy}{dx}  \bigg)=  \frac{dy}{dx}   \\

 \\  \sf \:  \:  \:  \:  \implies {(1 +  {x}^{2} )} \times  \frac{ {d}^{2} y}{d {x}^{2} }    + (2x - 1) \bigg( 2\frac{dy}{dx}  -  \frac{dy}{dx} \bigg)=  0 \\

 \\  \sf \:  \:  \:  \:  \implies {(1 +  {x}^{2} )} \times  \frac{ {d}^{2} y}{d {x}^{2} }    + (2x - 1) \frac{dy}{dx}  - =  0 \\

Hence proved.

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:logy =  {tan}^{ - 1}x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} logy =\dfrac{d}{dx}  {tan}^{ - 1}x

We know that

\underbrace{ \boxed{ \bf \: \dfrac{d}{dx}logx =  \frac{1}{x}}} \:  \:  \: and \:  \:  \: \underbrace{ \boxed{ \bf \: \dfrac{d}{dx} {tan}^{ - 1}x =  \frac{1}{1 +  {x}^{2} }}}

So, on applying these results, we have

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{d}{dx}y  = \dfrac{1}{1 +  {x}^{2} }

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx}  = \dfrac{1}{1 +  {x}^{2} }

\rm :\longmapsto\:(1 +  {x}^{2})\dfrac{dy}{dx} = y

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} \bigg((1 +  {x}^{2})\dfrac{dy}{dx} \bigg) =\dfrac{d}{dx} y

We know,

\underbrace{ \boxed{ \bf \: \dfrac{d}{dx}uv = u\dfrac{d}{dx}v + v\dfrac{d}{dx}u}}

Using this result, we get

\rm :\longmapsto\:(1 +  {x}^{2}) \dfrac{d}{dx}\dfrac{dy}{dx} + \dfrac{dy}{dx}\dfrac{d}{dx}(1 +  {x}^{2}) = \dfrac{dy}{dx}

\rm :\longmapsto\:(1 +  {x}^{2})\dfrac{ {d}^{2}y }{d {x}^{2} } + \dfrac{dy}{dx}(2x) = \dfrac{dy}{dx}

\rm :\longmapsto\:(1 +  {x}^{2})\dfrac{ {d}^{2}y }{d {x}^{2} } + \dfrac{dy}{dx}(2x)  -  \dfrac{dy}{dx} = 0

\rm :\longmapsto\:(1 +  {x}^{2})\dfrac{ {d}^{2}y }{d {x}^{2} } + (2x - 1)\dfrac{dy}{dx} = 0

Hence, Proved

Additional Information :-

 \boxed{ \bf \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}

 \boxed{ \bf \: \dfrac{d}{dx} {x} = 1}

 \boxed{ \bf \: \dfrac{d}{dx} {k} = 0}

 \boxed{ \bf \: \dfrac{d}{dx} {sinx} = cosx}

 \boxed{ \bf \: \dfrac{d}{dx} {cosx} =  - sinx}

 \boxed{ \bf \: \dfrac{d}{dx} {cosecx} =  - cosecx \: cotx}

 \boxed{ \bf \: \dfrac{d}{dx} {secx} =   secx \: tanx}

 \boxed{ \bf \: \dfrac{d}{dx} {tanx} =    {sec}^{2} x}

 \boxed{ \bf \: \dfrac{d}{dx} {cotx} =   -   {cosec}^{2} x}

Similar questions