Math, asked by mafatm10, 2 months ago

if log10 25= a and log10 75=b express the values of log10 9 and log10 4 in terms of and b​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: log_{10}(25)  = a

\rm :\longmapsto\: log_{10}( {5}^{2} )  = a

\rm :\longmapsto\: 2log_{10}( {5})  = a

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \:   log( {x}^{y} ) = y \: logx \bigg \}}

\bf\implies \: log_{10}(5) = \dfrac{a}{2}  -  -  - (1)

Also,

\rm :\longmapsto\: log_{10}(75)  = b

\rm :\longmapsto\: log_{10}(3 \times  {5}^{2} )  = b

\rm :\longmapsto\: log_{10}(3)  +  log_{10}( {5}^{2} )  = b

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \:   log(xy)  = logx + logy\bigg \}}

\rm :\longmapsto\: log_{10}(3)  + 2 log_{10}( {5})  = b

\rm :\longmapsto\: log_{10}(3) = b -  2 log_{10}( {5})

\bf\implies \: log_{10}(3) = b - a

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \: 2log_{10}(5) = a   \bigg \}}

Consider,

 \red{\bf :\longmapsto\: log_{10}(9)}

 \rm \:  \:  =  \:  \:  log_{10}( {3}^{2} )

 \rm \:  \:  =  \:  \: 2 \:  log_{10}(3)

 \rm \:  \:  =  \:  \: 2 \: (b - a)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{\red{\bf :\implies\: log_{10}(9) = 2(b - a)}}

Consider,

 \green{\bf :\longmapsto\: log_{10}(4)}

 \rm \:  \:  =  \:  \:  log_{10}( {2}^{2} )

 \rm \:  \:  =  \:  \: 2 \:  log_{10}(2)

 \rm \:  \:  =  \:  \: 2 \:  log_{10}\: \bigg(\dfrac{10}{5}  \bigg)

 \rm \:  \:  =  \:  \: 2 \:  \bigg( log_{10}(10)  -  log_{10}(5) \bigg)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \: log\dfrac{x}{y} = logx - logy \bigg \}}

 \rm \:  \:  =  \:  \: 2  \bigg (1 - \dfrac{a}{2} \bigg)

 \rm \:  \:  =  \:  \: 2 - a

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{\green{\bf :\implies\: log_{10}(4) = 2 - a}}

Similar questions