Math, asked by saunam15, 1 year ago

if log10 3 = 0.477 then find the no. of digits in 3^40​


Anonymous: ___k off

Answers

Answered by musliuakeem
17

Answer:from the equation log₁₀3 =0.477

i.e 3=10^0.477

3=2.999999

so that 2.999^40=

10637694969200170000

No of digit is 20

Step-by-step explanation:

Answered by TRISHNADEVI
94

 \red{ \huge{ \underline{ \overline{ \mid{ \bold{ \purple{ \:  \: SOLUTION \:  \red{ \mid}}}}}}}}

 \underline{ \bold{ \:  \: GIVEN \:  : }} \to \:  \:  \:  \:  \:  \:  \:  \bold{ log_{10}3  =0 .477} \\  \\  \\  \underline{ \bold{ \:  \: TO\:  \: FIND\:  \: }} \to \:  \:  \bold{No. \:  \: of \:  \: digit \:  \: in \:  \: 3 {}^{40}  =? }

 \bold{Let,} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bold{x = 3 {}^{40} } \\ \\   \underline{\bold { \:  \: Taking \:  \: logarithm \:  \: in \:  \: both \:  \: sides \: }} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{ log_{10}x =  log_{10}(3 {}^{40} ) }  \\  \\  \bold{ \Longrightarrow \:  \:  log_{10}x = 40  \:  \: log_{10}3 } \\  \\ \bold{ \Longrightarrow \:  \:  log_{10}x = 40 \times 0.477} \\  \\ \bold{ \Longrightarrow \:  \:  log_{10}x = 19.08}

 \bold{ \:  \: Since ,\:  \: the \:  \: characteristic \:  \: of \:  \: } \\  \\   \:  \:  \:  \:  \:  \: \bold{ log_{10}x =  log_{10}3 {}^{40}  = 19} \\  \\  \bold{So, \:  \: the \:  \: number \:  \: of \:  \: digit \:  \: in} \\  \\  \bold{x = 3 {}^{40}  = 19 + 1 =  \boxed{ \bold{ \:  \: 20 \:  \: }}}

 \bold{Hence,} \\  \\  \bold{If \:  \:  log_{10}3 = 0.477 \:  \: , \: then \:  \: the \:  \: no. \:  \: of \:   \: } \\  \bold{digit \:  \: in \:  \: 3 {}^{40}  =  \underline{ \red{ \:  \: 20 \:  \: }}}

Similar questions