Math, asked by MrAli1564, 1 year ago

If log10 7 = a, then log10(1/70) is equal to: op 1: -(1 + a)

Answers

Answered by sonam133
5
check the solution
ans is correct
Attachments:
Answered by pinquancaro
18

Answer:

\log_{10}(\frac{1}{70})=-(1+a)

Step-by-step explanation:

Given : If  \log_{10}7=a

To find : The value of \log_{10}(\frac{1}{70})

Solution :

Applying logarithmic properties to distribute the expression,

\log_{10}(\frac{1}{70})

Using \log (\frac{a}{b})=\log a-\log b

\log_{10}(\frac{1}{70})=\log_{10} 1-\log_{10} 70

We know, \log_{10} 1=0

\log_{10}(\frac{1}{70})=0-\log_{10} 70

\log_{10}(\frac{1}{70})=\log_{10} (10\times 7)

Using \log(ab)=\log a+\log b

\log_{10}(\frac{1}{70})=-(\log_{10} 10+\log_{10} 7)

We know, \log_{10} 10=1 and \log_{10}7=a

\log_{10}(\frac{1}{70})=-(1+a)

Therefore, Option 1 is correct.

Similar questions