Math, asked by Adityarocks8913, 25 days ago

If log1227 = a then log316 in terms of a is _______.

Answers

Answered by anjalirehan04
1

please mark me brain mark list

Attachments:
Answered by pulakmath007
4

SOLUTION

GIVEN

 \displaystyle \sf{ log_{12}(27) = a }

TO DETERMINE

 \displaystyle \sf{ log_{3}(16)  }

EVALUATION

 \displaystyle \sf{ log_{12}(27) = a }

 \displaystyle \sf{ \implies \:   \frac{ log(27) }{ log(12) }  = a }

 \displaystyle \sf{ \implies \:   \frac{ log( {3}^{3} ) }{ log( {2}^{2} \times 3 ) }  = a }

 \displaystyle \sf{ \implies \:   \frac{3 log( 3 ) }{ 2log 2 +   log  3 }  = a }

 \displaystyle \sf{ \implies \:   \frac{ log( 3 ) }{ 2log 2 +   log  3 }  =  \frac{a}{3}  }

 \displaystyle \sf{ \implies \:   \frac{ 2log 2 + log( 3 ) }{   log  3 }  =  \frac{3}{a}  }

 \displaystyle \sf{ \implies \:   \frac{ 2log 2  }{   log  3 } + 1  =  \frac{3}{a}  }

 \displaystyle \sf{ \implies \:   \frac{ 2log 2  }{   log  3 }  =  \frac{3}{a}   - 1}

 \displaystyle \sf{ \implies \:   \frac{ 2log 2  }{   log  3 }  =  \frac{3 - a}{a}   }

 \displaystyle \sf{ \implies \:   \frac{ log 2  }{   log  3 }  =  \frac{3 - a}{2a}   }

 \displaystyle \sf{ \implies \:   \frac{4 log 2  }{   log  3 }  =  \frac{4(3 - a)}{2a}   }

 \displaystyle \sf{ \implies \:   \frac{ log  {2}^{4}   }{   log  3 }  =  \frac{2(3 - a)}{a}   }

 \displaystyle \sf{ \implies \:   \frac{ log  16   }{   log  3 }  =  \frac{2(3 - a)}{a}   }

 \displaystyle \sf{ \implies \:   log_{3}(16)   =  \frac{2(3 - a)}{a}   }

FINAL ANSWER

 \displaystyle \sf{  \:   log_{3}(16)   =  \frac{2(3 - a)}{a}   }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Similar questions