Math, asked by rishii749, 1 year ago

If log2=0.301,log3=0.477,log⁡2=0.301,log⁡3=0.477,find the number of digits in (108)10.

Answers

Answered by vishal9354
2
108*10
1080
4digit
this is the answer
Answered by InesWalston
19

Answer-

The number of digits in the given number is 21

Solution-

For any positive integer 'n', the number of digits in 'n' is,

\left \lfloor \log_{10} n \right \rfloor+1

Here,

n=108^{10}

Applying the formula, the number of digits in n will be,

=\left \lfloor \log_{10} 108^{10}\right \rfloor+1

=\left \lfloor 10\times \log_{10} 108\right \rfloor+1

=\left \lfloor 10\log_{10} (2\times 2\times 3\times 3\times 3)\right \rfloor+1

=\left \lfloor 10(\log_{10} 2+\log_{10}  2+\log_{10} 3+\log_{10}3+\log_{10} 3)\right \rfloor+1

=\left \lfloor 10(0.301+0.301+0.477+0.477+0.477)\right \rfloor+1

=\left \lfloor 10(2.033)\right \rfloor+1

=\left \lfloor 20.33\right \rfloor+1

=20+1

=21

Therefore, it has 21 digits.

Similar questions