Math, asked by sakibanaaz103, 1 year ago

if log2=0.3010 and log3=0.4771 find the value of log7.2j

Answers

Answered by Anonymous
6
\underline{\large{\mathfrak{Solution : }}}

\mathsf{Given,} \\ \\<br /><br />\mathsf{\implies log \: 2 \: = \: 0.3010 } \\ \\<br /><br />\mathsf{\implies log \: 3 \: = \: 0.4771}<br />

\underline{\mathsf{To \: Find : }}

\mathsf{ = \: log \: 7.2 } \\ \\<br /><br />\mathsf{= \: log \: (\dfrac{72}{10})} \\ \\<br /><br />\underline{\underline{\mathsf{Using \: identity : }}} \\ \\<br /><br />\boxed{\mathsf{\implies log \: \left(\dfrac{a}{b}\right) \: = \: log \: a \: - \: log \: b }}

\mathsf{= \: log \: 72 \: - \: log \: 10 } \\ \\<br /><br />\mathsf{= \: log \: ( 2 \: \times \: 2 \: \times \: 2 \: \times \: 3 \: \times \: 3 ) \: - \: 1 \qquad \boxed{\mathsf{\implies log \: 10 \: = \: 1 \: }}}<br />

 \mathsf{ = \: log \: ( 2^{3} \: \times \: 3^{2}) \: - \: 1 } \\ \\<br /><br />\underline{\underline{\mathsf{Using \: identity : }}} \\ \\ <br /><br />\boxed{\mathsf{\implies log \: (ab) \: = \: log \: a \: + \: log \: b }}<br />

\mathsf{= \: log \: 2^{3} \: + \: log \: 3^{2} \: - \: 1 } \\ \\<br /><br />\underline{\underline{\mathsf{Using \: identity : }}} \\ \\<br /><br />\boxed{\mathsf{\implies log \: a^{b} \: = \: b \: log \: a \: }} \\ \\ \mathsf{ = \: 3 \: log \: 2 \: + \: 2 \: log \: 3 \: - \: 1}

\mathsf{= \: 3 \: \times \: (0.3010) \: + \: 2 \: \times \: (0.4771 ) \: - \: 1 } \\ \\<br /><br />\mathsf{= \: 0.9030 \: + \: 0.9542 \: - \: 1 } \\ \\<br /><br />\underline{\mathsf{According \: to \: BODMAS : }} \\ \\<br /><br />\mathsf{= \: 1.8572 \: - \: 1 } \\ \\<br /><br />\mathsf{= \: 0.8572 }<br />

\boxed{\underline{\large{\mathsf{ The \: required \: answer \: is \: 0.8572 }}}}<br />

sakibanaaz103: thank you very much for helping me
Anonymous: My Pleasure !!
Similar questions