Math, asked by trinitychristine34, 2 months ago

If log2, log4 and logx are in AP, then find the value of ‘x’.​

Answers

Answered by DropwoodYT
1

Answer:

Answer is in the picture attached

Attachments:
Answered by Prafulthengne2
0

Step-by-step explanation:

log

2

(5.2

x

+1),log

4

(2

1−x

+1)and1 are in AP.

Common difference d=a

2

−a

1

=a

3

−a

2

∴log

4

(2

1−x

+1)−log

2

(5.2

x

+1)=1−log

4

(2

1−x

+1)

⇒log

4

(2

1−x

+1)+log

4

(2

1−x

+1)=log

2

2+log

2

(5.2

x

+1)[log

a

a=1]

⇒2log

4

(2

1−x

+1)=log

2

2+log

2

(5.2

x

+1)

2

2

⋅log

2

(2

1−x

+1)=log

2

(2(5.2

x

+1))

[Since,log

b

n

a=nlog

b

a & log

c

a+log

c

b=log

c

(ab)]

∴2

1−x

+1=5.2

x+1

+2

⇒2⋅

2

x

1

=10⋅2

x

+1

Let 2

x

=y

y

2

=10y+1

⇒10y

2

+y−2=0

⇒10y

2

+5y−4y−2=0

⇒5y(2y+1)−2(2y+1)=0

⇒(5y−2)(2y+1)=0

⇒y=

5

2

ory=

2

−1

⇒2

x

=

5

2

or2

x

=

2

−1

∴2

x

=

5

2

(Since exponent of any real number can never be a negative value).

Applying log

2

on both sides,

log

2

(2x)=log

2

(

5

2

)

⇒x=log

2

2−log

2

5

⇒x=1−log

2

5

Similar questions