Math, asked by sajin94, 5 months ago

If log2 x + log4 x + log16 x = 7/2 find the value of x​

Answers

Answered by Anonymous
23

GiveN :-

 \sf \:  log(2x)  +  log(4x)  +  log(16x)  =  \frac{7}{2}

To FinD :-

  • The value of x

SolutioN :-

 \sf \:  log(2x)  +  log(4x)  +  log(16x)  =  \frac{7}{2}  \\  \\  \sf \:  log(2x)  +  log(2 \times 2x)  +  log(8 \times 2x)  =  \frac{7}{2}

Using the identity

  •  \sf log(m \times n)  =  log(m)  +  log(n)

 \sf log(2x)  +  log(2)  +  log(2x)  +  log(8)  +  log(2x)  =  \frac{7}{2}  \\  \\  \sf \: 3 log(2x)  +  log(8)  +  log(2)  =  \frac{7}{2}  \\  \\ \sf \: 3 log(2x)  +  log(2 \times 2 \times 2)  +  log(2)  =  \frac{7}{2}  \\  \\  \sf \: 3 log(2x)  +  log( {2}^{3} )  +  log(2)  =  \frac{7}{2}

Using the identity :-

  •  \sf \:  log( {m}^{n} )  =  n \: log(m)

 \sf3 log(2x)  + 3 log(2)  +  log(2)  =  \frac{7}{2}  \\  \\  \sf \: 3 log(2x)  + 4 log(2)  =  \frac{7}{2}

We know that :-

  •  \sf \:  log(2)  = 0.3

 \sf3 log(2x)  + 4 \times 0.3 =  \frac{7}{2}  \\  \\  \sf \: 3 log(2x)  + 1.2 = 3.5 \\  \\  \sf \: 3 log(2x)  = 3.5 - 1.2 \\  \\  \sf3 log(2x)  = 2.3 \\  \\ \sf  log(2x)  =  \frac{2.3}{3}  \\  \\  \sf \:  log(2x)  = 0.76 \\  \\

We know that :-

  •  \sf \: 0.76 =  log(5.8)

 \sf log(2x)  =  log(5.8)  \\  \\  \sf \: 2x = 5.8 \\  \\  \sf \: x =  \frac{5.8}{2}  \\  \\ </strong><strong> </strong><strong>\</strong><strong>h</strong><strong>u</strong><strong>g</strong><strong>e</strong><strong>{</strong><strong> \boxed{ \sf \: x = 2.9</strong><strong>}</strong><strong>}

Similar questions