Math, asked by roshanmirkute48, 4 months ago

: If log3 (x + 6) = 2, find 'x'.​

Answers

Answered by archita7623
7

hope it's helpful for you!

Attachments:
Answered by Anonymous
21

Solution :

x = 3

Theory :

The Logarithm function is defined as

\sf\:f(x) =\log_{b}(x)

where b > 0 and b ≠ 1 and also x >0, reads as log base b of x.

⇒If \sf\:\log_{b}(a)  = x ,in exponent form :

 \implies \: b {}^{x} = a

Step by step explanation :

We have to Find the value of x

\rm\log_{3}(x+6)=2

We know that

\sf\:\log_{b}(a)  = x ,in exponent form :

 \implies \: b {}^{x} = a

Thus ,

\rm\log_{3}(x+6)=2

\sf\implies\:(3)^2=x+6

\sf\implies\:9=x+6

\sf\implies\:x=9-6

\sf\implies\:x=3

Therefore, the value of x is 3

_____________________

More About the topic

Rules of Logarithm :

• Basic rules

\sf\:1)\log(a) + \log(b) = \log(ab)

\sf\:2)\log( \frac{a}{b} ) = \log(a) - \log(b)

\sf\:3)\log(a) {}^{n} = nlog(a)

\sf\:4)\log_{a}(a) = 1

\sf\:5)\log_{a}(1)=0

\sf\:6)\log_{a{}^{n}}x=\dfrac{1}{n}\times\log_{a}x

\sf\:7)\log_{a{}^{n}}x{}^{m}=\dfrac{m}{n}\times\log_{a}

•Base changing rule

\sf\:\log_{a}x = \dfrac{\log_{b}x}{\log_{b}a}

Similar questions