Math, asked by hiremathpreeti86, 18 days ago

If log3x+ log3 4=2 then x=
1) 9/4
2) 4/9
3) 9
4) 0
Please solve this MCQ​

Answers

Answered by mathdude500
7

Given Question :-

\rm \: If \:  log_{3}(x) +  log_{3}(4) = 2, \: then \: x =  \\

\rm \:  \:  \:  \:  \:  \:  \: 1) \: \dfrac{9}{4}  \\

\rm \:  \:  \:  \:  \:  \:  \: 2) \: \dfrac{4}{9}  \\

\rm \:  \:  \:  \:  \:  \:  \: 3) \: 9  \\

\rm \:  \:  \:  \:  \:  \:  \: 4) \: 0  \\

\large\underline{\sf{Solution-}}

Given Logarithmic equation is

\rm \:  log_{3}(x) +  log_{3}(4) = 2 \\

We know,

\boxed{\sf{  \: log_{x}(a) +  log_{x}(b) \:  =  \:  log_{x}(ab) \: }} \\

So, using this identity, we get

\rm \:  log_{3}(4x) = 2 \\

We know, that

\boxed{\sf{  \: log_{x}(y) \:  =  \: z \:  \: \rm\implies \:x =  {y}^{z} \:  \: }} \\

So, using this identity, we get

\rm \: 4x =  {3}^{2}  \\

\rm \: 4x =  9  \\

\rm\implies \:x = \dfrac{9}{4}  \\

\rm\implies \:Option \: 1) \: is \: correct. \\

Verification :-

Consider, LHS

\rm \:  log_{3}(x) +  log_{3}(4) \\

On substituting the value of x, we get

\rm \:  =  \:  log_{3}\bigg( \dfrac{9}{4} \bigg) +  log_{3}(4) \\

\rm \:  =  \:  log_{3}\bigg( \dfrac{9}{4}  \times 4\bigg) \\

\rm \:  =  \:  log_{3}(9) \\

\rm \:  =  \:  log_{3}( {3}^{2} ) \\

\rm \:  =  \: 2 \\

Hence, Verified

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\sf{  \: log_{x}(a) +  log_{x}(b) \:  =  \:  log_{x}(ab) \: }} \\

\boxed{\sf{  \: log_{x}(a) -  log_{x}(b) \:  =  \:  log_{x}\bigg( \frac{a}{b} \bigg) \: }} \\

\boxed{\sf{  \: log_{x}( {a}^{b} ) \:  =  \: b \:  log_{x}(a) \: \: }} \\

\boxed{\sf{  \: \:  log_{x}(x)  \:  =  \: 1 \: }} \\

\boxed{\sf{  \: \:  log_{x}( {x}^{y} )  \:  =  \: y \:  \: }} \\

\boxed{\sf{  \: \:  log_{ {x}^{z} }( {x}^{y} )  \:  =  \:  \frac{y}{z}  \:  \: }} \\

\boxed{\sf{  \: \:  {a}^{ log_{a}(x) }  \:  =  \: x \: }} \\

\boxed{\sf{  \: \:  {a}^{y \:  log_{a}(x ) }  \:  =  \:  {x}^{y}  \: }} \\

Answered by TheBestWriter
2

Answer:

We know that,

logₙ (y) = z => x = y²

So,

4x =3²

4x = 9

=> x = 9/4

So, option 1.) is correct

Now, Verification

log₃ (9/4) + log₃ (4)

log₃ (9/4×4)

log₃ (9)

log₃ (3²)

= 2

Hence, Verified

Similar questions