Math, asked by biniroychacko7746, 1 month ago

If log4x +log16x + log64x +log256x = 25/6 then the value of x is

Answers

Answered by MaheswariS
4

\underline{\textbf{Given:}}

\mathsf{log\,_4\,x+log\,_{16}\,x+log\,_{64}\,x+log\,_{256}\,x=\dfrac{25}{6}}

\underline{\textbf{To find:}}

\textsf{The value of x}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{log\,_4\,x+log\,_{16}\,x+log\,_{64}\,x+log\,_{256}\,x=\dfrac{25}{6}}

\mathsf{Using,}\;\;\boxed{\mathsf{log\,_a\,b=\dfrac{1}{log\,_b\,a}}}

\mathsf{\dfrac{1}{log\,_x\,4}+\dfrac{1}{log\,_x\,16}+\dfrac{1}{log\,_x\,64}+\dfrac{1}{log\,_x\,256}=\dfrac{25}{6}}

\mathsf{\dfrac{1}{log\,_x\,4}+\dfrac{1}{log\,_x\,4^2}+\dfrac{1}{log\,_x\,4^3}+\dfrac{1}{log\,_x\,4^4}=\dfrac{25}{6}}

\mathsf{Using,}\;\;\boxed{\mathsf{log\,_a\,M^n=n\,log\,_a\,M}}

\mathsf{\dfrac{1}{log\,_x\,4}+\dfrac{1}{2\,log\,_x\,4}+\dfrac{1}{3\,log\,_x\,4}+\dfrac{1}{4\,log\,_x\,4}=\dfrac{25}{6}}

\mathsf{\dfrac{1}{log\,_x\,4}\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)=\dfrac{25}{6}}

\mathsf{\dfrac{1}{log\,_x\,4}\left(\dfrac{12+6+4+3}{12}\right)=\dfrac{25}{6}}

\mathsf{\dfrac{1}{log\,_x\,4}\left(\dfrac{25}{12}\right)=\dfrac{25}{6}}

\mathsf{\dfrac{1}{log\,_x\,4}\left(\dfrac{1}{12}\right)=\dfrac{1}{6}}

\mathsf{\dfrac{1}{log\,_x\,4}=\dfrac{12}{6}}

\mathsf{\dfrac{1}{log\,_x\,4}=2}

\mathsf{log\,_x\,4=\dfrac{1}{2}}

\implies\mathsf{x^{\dfrac{1}{2}}=4}

\textsf{Squaring on bothsides, we get}

\mathsf{x=4^2}

\implies\boxed{\mathsf{x=16}}

Answered by yugeshsan47
1

Step-by-step explanation:

i hope answer will help you

Attachments:
Similar questions