Math, asked by jonnamano, 7 months ago


If log5 2 = log3m/log3n, then find the value of m and n.​

Answers

Answered by MaheswariS
4

\underline{\textbf{Given:}}

\mathsf{log_5\,2=\dfrac{log_3\,m}{log_3\,m}}

\underline{\textbf{To find:}}

\textsf{The value of m and n}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{log_5\,2=\dfrac{log_3\,m}{log_3\,m}}

\textsf{Using the formula,}

\boxed{\mathsf{log_ab=\dfrac{1}{log_ba}}}

\mathsf{log_5\,2=log_3\,m{\times}log_n\,3}

\mathsf{log_5\,2=log_n\,3{\times}log_3\,m}

\textsf{Using the formula,}

\boxed{\mathsf{log_ac=log_ab{\times}log_bc}}

\mathsf{log_5\,2=log_n\,m}

\textsf{Comparing on bothsides, we get}

\boxed{\mathsf{m=2\;\;\&\;\;n=5}}

\underline{\textbf{Find more:}}

log root a to the base b into log cube root b to the base e into log fourth root of c to the base is equal to

https://brainly.in/question/11843504  

Answered by ashishbhaskar0123
2

Answer:m=2 and n=5

Step-by-step explanation:

we know that the log has base 10 in general so we convert base 5, base 3 into base 10 and the formula of converting the log is

log10 a\lob10b.

now ,

log10 2/log10 5=(log10 m/log10 3)/(log10 n/log10 3)

log10 2/log10 5=log10 m/log 10 n

log10(2/5)=log10(m/n)

so compare both side

m=2 and n=5  

Similar questions