Math, asked by ramyareddypagala2000, 6 months ago

If log8 64 + log5 1/125 + 2log2 8=x. What is the value
of x ?​

Answers

Answered by gaiuscr30
3

Answer:

5

log8 64 = 2

log5 1/125 = -3

2log2 8= 6

2-3+6 = 5

Answered by pulakmath007
2

SOLUTION

GIVEN

\displaystyle \sf{   log_{8}(64)  +  log_{5} \bigg( \frac{1}{125}  \bigg) + 2 log_{2}(8)  = x }

TO DETERMINE

The value of x

FORMULA TO BE IMPLEMENTED

We are aware of the formula on logarithm that

 \sf{1.  \:  \: \:  log( {a}^{n} ) = n log(a)  }

 \sf{2. \:  \:  log(ab) =  log(a)   +  log(b) }

 \displaystyle \sf{3. \:  \:  log \bigg( \frac{a}{b}  \bigg)  =  log(a) -  log(b)  }

 \sf{4. \:  \:   log_{a}(a)   = 1}

EVALUATION

\displaystyle \sf{   log_{8}(64)  +  log_{5} \bigg( \frac{1}{125}  \bigg) + 2 log_{2}(8)  = x }

\displaystyle \sf{ \implies  log_{8}( {8}^{2} )  +  log_{5} \bigg( \frac{1}{ {5}^{3} }  \bigg) + 2 log_{2}( {2}^{3} )  = x }

\displaystyle \sf{ \implies 2 log_{8}( {8}^{} )  +  log_{5} \bigg(  {5}^{ - 3}   \bigg) + 6 log_{2}( {2}^{} )  = x }

\displaystyle \sf{ \implies (2  \times 1) - 3  log_{5} \bigg(  5   \bigg) + (6 \times 1 )  = x }

\displaystyle \sf{ \implies 2 - 3 + 6 = x }

\displaystyle \sf{ \implies x  = 8 - 3}

\displaystyle \sf{ \implies x  = 5}

FINAL ANSWER

Hence the required value of x = 5

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if 2log x base y=6,then the relation between x and y

https://brainly.in/question/27199002

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Similar questions