Math, asked by arhaanyaser2070, 1 year ago

If log8 x + log8 (1/6) = 1/3 then the value of x is:

Answers

Answered by pinquancaro
42

Answer:

The value of x is 12.

Step-by-step explanation:

Given : If \log_8 x+\log_8(\frac{1}{6})=\frac{1}{3}

To find : The value of x?

Solution :

Expression  \log_8 x+\log_8(\frac{1}{6})=\frac{1}{3}

When bases are same then according to logarithmic property,

\log a+\log b=\log (ab)

\log_8(\frac{x}{6})=\frac{1}{3}

Using property, \log_b a=x\\\Rightarrow a=b^x

\frac{x}{6}=8^{\frac{1}{3}}

\frac{x}{6}=2

x=2\times 6

x=12

Therefore, The value of x is 12.

Answered by mysticd
9

Answer:

The \: value \: of \: x = 12

Step-by-step explanation:

Given \:log_{8}x+log_{8}\:\frac{1}{6}=\frac{1}{3}

\implies log_{8}\:{x \times \frac{1}{6}}=\frac{1}{3}

 By \: logarithmic\:law:\\log_{a}m+log_{a}n= log_{a}mn

\implies log_{8}\:\frac{x}{6}=\frac{1}{3}

\implies \frac{x}{6}=8^{\frac{1}{3}}

Since, If \: log_{a}N = x \:\implies N = a^{x}

\implies x = 6 \times \big(2^{3}\big)^{\frac{1}{3}}

\implies x = 6 \times 2

\implies  x = 12

Therefore,

The \: value \: of \: x = 12

•••♪

Similar questions