if ((loga)/(b-c))=((logb)/(c-a))=((logc)/(a-b)), then prove that (a^a)(b^b)(c^c)=1
Answers
Answered by
2
ANSWER:
Let logab−c=logbc−a=logca−b=k
then considering 10 base logarithm we get
• a=10k(b−c)
• b=10k(c−a)
• c=10k(a−b)
So
• aa=10k(ab−ca)
• bb=10k(bc−ab)
• cc=10k(ca−bc)
Hence the numerical value of
aa⋅bb⋅cc
=10k(ab−ca)⋅10k(bc−ab)⋅10k(ca−bc)
=10k(ab−ca+bc−ab+ca−bc)
=100=1
EXPLANATION:
Set logab−c=logbc−a=logca−b=k.
∴loga=k(b−c),logb=k(c−a),and,logc=k(a−b).
Now, log(aa⋅bb⋅cc),
=aloga+nblogb+clogc,
=a{k(b−c)}+b{k(c−a)}+c{k(a−b)}.
=0,
i.e.,log(aa⋅bb⋅cc)=0.
⇒aa⋅bb⋅cc=1,
Answered by
0
Answer:
Me Also.
This is correct answer
Similar questions