Math, asked by dprasad1505, 1 month ago

If loga2 = x and loga 5 = y, find in terms of x and y, expressions for
(a) log2 ^5;
(b) loga ^20.

Answers

Answered by anindyaadhikari13
3

\textsf{\large{\underline{Solution}:}}

Given That:

 \rm: \longmapsto log_{a}(2) = x

 \rm: \longmapsto log_{a}(5) = y

For question a:

We know that:

 \rm: \longmapsto log_{x}(y) = \dfrac{ log_{a}(y) }{ log_{a}(x) } ,x > 0, y>0,a>0, x\ne 1,a\ne 1

Therefore:

 \rm: \longmapsto log_{2}(5) = \dfrac{ log_{a}(5) }{ log_{a}(2) }

 \rm: \longmapsto log_{2}(5) = \dfrac{y}{x}

Which is our required answer.

For question b:

We have:

 \rm =  log_{a}(20)

 \rm =  log_{a}(4 \times 5)

 \rm =  log_{a}(4) +  log_{a}(5)

 \rm =  log_{a}( {2}^{2} ) +  log_{a}(5)

 \rm =  2 \: log_{a}(2) +  log_{a}(5)

 \rm =  2x + y

 \rm: \longmapsto log_{a}(20) = 2x + y

Which is our required answer.

\textsf{\large{\underline{More To Know}:}}

 \rm 1. \:  \:  {a}^{n} = b \implies log_{a}(b)  = n

 \rm 2. \:  \: log_{a}(1)  = 0, \: a \neq0,1

 \rm 3. \:  \: log_{a}(a)  = 1, \: a \neq0,1

 \rm 4. \:  \: log_{a}(x)  = log_{a}(y) \implies x = y

 \rm 5. \:  \: log_{e}(x) =  ln(x)

 \rm6. \:  \:  log_{a}(x) + log_{a}(y) = log_{a}(xy)

 \rm7. \:  \:  log_{a}(x) - log_{a}(y) = log_{a} \bigg( \dfrac{x}{y} \bigg)

 \rm 8. \:  \: log_{a}( {x}^{n} ) =  n\log_{a}(x)

 \rm 9. \:  \:  log_{a}(m) =  \dfrac{ log_{b}(m) }{ log_{b}(a) },m > 0,b > 0,a \ne1,b \ne1

 \rm 10. \:  \: log_{a}(b) = \dfrac{1}{ log_{b}(a) }

Answered by esuryasinghmohan
1

Step-by-step explanation:

given :

  • If loga2 = x and loga 5 = y, find in terms of x and y, expressions for

to find :

  • find in terms of x and y, expressions for

solution :

  • = loga (20)

  • = loga (4 x 5)

  • = loga (4) + loga (5)

  • loga (2²) + loga (5)

  • = 2 loga (2) + loga (5)

  • = 2x + y

  • :loga (20) = 2x + y
Similar questions