If logs 64 +logs 1/125 + 2 log2 8= x, what is the value of x?
Answers
.
64+ 1/125 + 2+ 28 = x
64 + 1 +2 +28 = 125*x
67+28 = 125x
95 = 125x
125x = 95
x = 95/125
x= 19/25
Given:
log64 +log1/125 + 2 log2 8= x
To Find:
value of x
Solution:
According to logarithmic rules
loga + logb + logc = log(a×b×c)
alogb= log
log(a/b) = loga - log b
So,
log64 +log1/125 + 2 log28 = log64 +log1/125 + log(28)²
= log64 + log1 - log 125 + log(28)²
= log +log1 - log
+ log(28)²
= 6×log2 + log1 - (3×log5) + 2×log28
= (6×0.301)+0-(3×0.69)+(2×1.44)
= 1.806-2.07+2.88
=2.616
Hence the value of x is 2.616