Math, asked by Eshaan6773, 1 year ago

If logx (1/343) = 3, then the value of x is equal to

Answers

Answered by pulakmath007
32

SOLUTION

GIVEN

 \displaystyle \sf{}  log_{x} \bigg( \frac{1}{343}  \bigg) = 3

TO DETERMINE

The value of x

FORMULA TO BE IMPLEMENTED

 \displaystyle \sf{} 1. \:  \:  \:  log_{x} a = m \:  \:  \: implies \:  \: a =  {x}^{m}

 \sf{}2. \:  \:  {( {a}^{m} )}^{n}  =  {a}^{mn}

EVALUATION

Here it is given that

 \displaystyle \sf{}  log_{x} \bigg( \frac{1}{343}  \bigg) = 3

 \implies  \displaystyle \sf{}  {x}^{3}  =  \frac{1}{343}

 \implies  \displaystyle \sf{}  {x}^{3}  =   {343}^{ - 1}

 \implies  \displaystyle \sf{}  {x}^{3}  =    {( {7}^{3}) }^{ - 1}

 \implies  \displaystyle \sf{}  {x}^{3}  =     {(7)}^{ - 3}

 \implies  \displaystyle \sf{}  {x}^{3}  =    {( {7}^{ - 1}) }^{ 3}

 \implies  \displaystyle \sf{}  x =    {7}^{ - 1}

 \implies  \displaystyle \sf{}  x =   \frac{1}{7}

FINAL ANSWER

 \displaystyle \sf{} The \:  required \:  value \:  of \:  \:  x  \: is \:   \:  \frac{1}{7}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

log₁₀(10.01),Find approximate value

https://brainly.in/question/5598224

Similar questions