Math, asked by anvithaananda, 10 months ago

if logx:logy:logz=(y-z):(z-x):(x-y) then 1=

Answers

Answered by sonuvuce
2

If logx:logy:logz=(y-z):(z-x):(x-y) then xyz = 1

Step-by-step explanation:

Given

\log x:\log y:\log z=(y-z):(z-x):(x-y)

Let the base of log be a

If the common ratio is k

Then

\log_a x=(y-z)k

\implies x=a^{(y-z)k}             (∵ By definition of log if \log_a x=y\implies x=a^y)

\log_a y=(z-x)k

\implies y=a^{(z-x)k}

\log_a z=(x-y)k

\implies z=a^{(x-y)k}

Thus,

xyz=a^{(y-z)k}\times a^{(z-x)k\times a^{(x-y)k}

\implies xyz=a^{k(y-z+z-x+x-y)}        (∵ a^m\times a^n=a^{m+n})

\implies xyz=a^0   (∵ a^0=1)

\implies xyz=1

Hope this answer is helpful.

Know More:

Q: If logx/y-z=logy/z-x=logz/x-y show that x*y*z=1

Click Here: https://brainly.in/question/4997152

Q: Logx/y-z=logy/z-x=logz/x-y then prove that xyz=1

Click Here: https://brainly.in/question/4656489

Similar questions