Math, asked by sk7066, 1 year ago

If LsecФ - MtanФ + n = 0 and L'secФ - M'tanФ + n = 0
Then Prove that : (M'N + MN')²-(N'L - NL')² = (L'M - LM')²


sk7066: Please answer

Answers

Answered by kvnmurty
7
There is a mistake in the question...  LHS should have:  (M'N - MN')²

Let Ф = A   for easy writing.

L secA - M tan A = - N          L' secA - M' tan A = - N'

M' N - M N' = sec A (M' L - M L')
N' L - N L' = LM' tan A - LL' sec A + LL' sec A - ML' tanA
                 = tanA (LM' - ML')
LHS = (LM' - ML')² (sec²A - tan²A) 
         = RHS


Anonymous: best answer
Answered by rishika79
0

Step-by-step explanation:

my writing is not clear but hope you will understand...

hope it helps you...

Attachments:
Similar questions