if m=1+^2 then find m^4-1/m^4
Answers
Answered by
12
hey dear here is ur answer
M = 1+√2
1/m = 1/1+√2
= 1/(1+√2) × (1-√2)/(1-√2)
= 1-√2/(1²-√2²)
= 1-√2/(1-2)
= 1-√2/-1
= -(1-√2)
= √2-1
m+1/m = √2+1+√2-1
= 2√2
m²+1/m² = (m+1/m)²-2(m)(1/m)
= (2√2)²-2
= 4(2)-2 = 8-2 = 6
m²-1/m² = (√2+1)² - (√2-1)²
= {√2²+1²+2(√2)(1)} - {√2²+1²-2(√2)(1)}
= {2+1+2√2}-{2+1-2√2}
= {3+2√2} - {3-2√2}
= 3+2√2-3+2√2
= 4√2
m⁴-1/m⁴ = (m²)² - (1/m²)²
= (m²-1/m²)(m²+1/m²)
= (4√2)² × 6
= 16(2) × 6
= 32 × 6
= 192
hope it helps u
M = 1+√2
1/m = 1/1+√2
= 1/(1+√2) × (1-√2)/(1-√2)
= 1-√2/(1²-√2²)
= 1-√2/(1-2)
= 1-√2/-1
= -(1-√2)
= √2-1
m+1/m = √2+1+√2-1
= 2√2
m²+1/m² = (m+1/m)²-2(m)(1/m)
= (2√2)²-2
= 4(2)-2 = 8-2 = 6
m²-1/m² = (√2+1)² - (√2-1)²
= {√2²+1²+2(√2)(1)} - {√2²+1²-2(√2)(1)}
= {2+1+2√2}-{2+1-2√2}
= {3+2√2} - {3-2√2}
= 3+2√2-3+2√2
= 4√2
m⁴-1/m⁴ = (m²)² - (1/m²)²
= (m²-1/m²)(m²+1/m²)
= (4√2)² × 6
= 16(2) × 6
= 32 × 6
= 192
hope it helps u
Smriti1222:
hello dear
Answered by
3
Answer:
answer is 192
Step-by-step explanation:
m = 1+√2
1/m = 1/1+√2
= 1/(1+√2) × (1-√2)/(1-√2)
= 1-√2/(1²-√2²)
= 1-√2/(1-2)
= 1-√2/-1
= -(1-√2)
= √2-1
m+1/m = √2+1+√2-1
= 2√2
m²+1/m² = (m+1/m)²-2(m)(1/m)
= (2√2)²-2
= 4(2)-2 = 8-2 = 6
m²-1/m² = (√2+1)² - (√2-1)²
= {√2²+1²+2(√2)(1)} - {√2²+1²-2(√2)(1)}
= {2+1+2√2}-{2+1-2√2}
= {3+2√2} - {3-2√2}
= 3+2√2-3+2√2
= 4√2
m⁴-1/m⁴ = (m²)² - (1/m²)²
= (m²-1/m²)(m²+1/m²)
= (4√2)² × 6
= 16(2) × 6
= 32 × 6
= 192
Similar questions