Math, asked by hanumanji2006, 8 months ago

If m= 1 + √2 then find m⁴ - 1/m⁴​

Answers

Answered by deviv8390
2

Answer:

m = 1 +  \sqrt{2}

 \frac{1}{m}  =  \frac{1}{1 +  \sqrt{2} }

 \frac{1}{m} =  \sqrt{2}  - 1

 {m}^{4}  -   { \frac{1}{m} }^{4}

 { {m}^{2} }^{2}  -    { { \frac{1}{m} }^{2} }^{2}

 { {(1 +  \sqrt{2}) }^{2} }^{2}  -  { { \sqrt{2 - 1} }^{2} }^{2}

Answered by amitnrw
0

Given :  m = 1  + √2

To Find : m⁴ - 1/m⁴  

Solution:

m = 1  + √2

Squaring both sides

=> m²  = 1 + 2 + 2√2

=> m²  = 3 + 2√2

m = 1  + √2

1/m  = 1/(1 +  √2)

=>1/m = √2 - 1

1/m²   = 2 + 1 - 2√2

=> 1/m² = 3 -  2√2

m⁴ - 1/m⁴  

= (m²  + 1/m²) (m² -  1/m²)

= (  3 + 2√2 +  3 -  2√2) ( 3 +  2√2  -  3 +  2√2)

= 6 (4√2)

= 24√2

Learn More:

If x²-y²= 12 and x³+y³ = 72, find the value of x and y​ - Brainly.in

brainly.in/question/8403056

Solve the simultaneous equations x+y=4 ; 2x-3y=-2 graphically ...

brainly.in/question/8383505

Similar questions