Math, asked by kulkarnithapa898, 4 months ago

if m = 1+√2,then find the value of m power 4 - 1/m power 4​

Answers

Answered by Anonymous
1

Answer:

  • The answer is 4.

Step-by-step explanation:

As given in the question,m = 1+ √2 and to find \sf{m}^{4}-\sf\frac{1}{{m}^{4}}

 \sf  \implies \:  {m}^{4} -  \frac{1}{ {m}^{4} }   \\  \\ \sf \:  {( {m}^{2}) }^{2}  -   {( \frac{1}{  {m}^{2} }) }^{2}  \\  \\  \sf \:  ({m}^{2}  +  \frac{1}{ {m}^{2} } )( {m}^{2}  -  \frac{1}{ {m}^{2} } ) \\  \\ \sf  \: (( {m +  \frac{1}{m}) }^{2}  - 2.m. \frac{1}{m} )((m +  \frac{1}{m} )(m -  \frac{1}{m} ) \\  \\  \\  \sf \: now \: put \: the \: value \: on \: their \: places \\  \\  \sf \:  {(1 +  \sqrt{2} +  \frac{1}{1 +   \sqrt{2} })  }^{2}  - 2(1 +  \sqrt{2} +  \frac{1}{1 +  \sqrt{2}} )(1 +  \sqrt{2}  -  \frac{1}{1 +  \sqrt{2} } )\\  \\  \sf \:((3  +  \frac{1}{3} ) - 2) {(1 +  \sqrt{2}) }^{2}  \\  \\  \sf \:  \frac{4}{3} \times 3  = 4

Hence, the answer is 4.

Similar questions