If m=1+√2, then find the value of m⁴-1/m⁴
Answers
Answered by
12
Step-by-step explanation:
1/m = 1/1+√2
= 1/(1+√2) × (1-√2)/(1-√2)
= 1-√2/(1²-√2²)
= 1-√2/(1-2)
= 1-√2/-1
= -(1--√2)
= √2-1
m+1/m = √2+1+√2-1
= 2√2
m²+1/m² = (m+1/m)²-2(m)(1/m)
= (2-√2)²-2
= 4(2)-2
= 8-2
= 6
= {√2²+1²+2(√2)(1)} - {√2²+1²-2(√2)
= (2+1+2√2}{2+1-2-√2}
=(3+2√2)-(3-2-√2}
= 3+2√2-3+2√2
= 4√2
(1)}
m^-1/m² = (m²)² - (1/m²)²
= (m²-1/m²)(m²+1/m²)
= (4-√2) × 6
= 24√2
Answered by
11
Attachments:
Similar questions