Math, asked by scarlet65, 2 months ago

If m-1/m =1 find, m³-1/m³​

Attachments:

Answers

Answered by yuvrajku2015
5

hope it helps you

if u find it helpful

please like it

Attachments:
Answered by Anonymous
97

__________________________________

\huge \rm {Answer:-}

__________________________________

 \rm {★Given:-}

\large \to \tt {m-\frac{1}{m}=1}

 \rm {★To\: Find:-}

\large \to \tt {m^{3}-\frac{1}{m^{3}}=?}

__________________________________

\large \dashrightarrow \tt {m-\frac{1}{m}=1}

 \tt {★"cubing\: on\: both\: sides"}

\large \dashrightarrow \tt {(m-\frac{1}{m})^{3}=(1)^3}

 \tt {★It\: is\: in\: the\: form\: of\: (a-b)^{3}}

 \rm {★We\: know:-}

 \tt \purple {(a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}}

\large \dashrightarrow \tt {(m-\frac{1}{m})^{3}=(1)^3}

\large \dashrightarrow \tt {m^{3}-3(m)^{2}\times(\frac{1}{m})+3(m)\times(\frac{1}{m^{2}})-(\frac{1}{m^{3}})=1}

\large \dashrightarrow \tt {m^{3}-3\cancel{(m)^{2}}\times(\frac{1}{\cancel {m}})+3(\cancel{m})\times(\frac{1}{\cancel{m^{2}}})-(\frac{1}{m^{3}})=1}

\large \dashrightarrow \tt {m^{3}-3m+\frac{3}{m}-\frac{1}{m^{3}}=1}

 \large \dashrightarrow \tt{m^{3}-\frac{1}{m^{3}}-3(m-\frac{1}{m})=1}

 \large \dashrightarrow \tt{m^{3}-\frac{1}{m^{3}}-3(1)=1}

 \tt{[∵ m-\frac{1}{m}=1]}

 \large \dashrightarrow \tt{m^{3}-\frac{1}{m^{3}}-3=1}

 \large \dashrightarrow \tt{m^{3}-\frac{1}{m^{3}}=1+3}

 \large \dashrightarrow \tt{m^{3}-\frac{1}{m^{3}}=4}

__________________________________

 \rm {★Thence,}

 \large \implies  \tt \green{m^{3}-\frac{1}{m^{3}}=4}

__________________________________

Similar questions