Math, asked by Ratul37, 10 months ago

If m+1/m=3, then prove , m= (3+√5)/2

Answers

Answered by BrainlyPopularman
8

{ \bold{ \boxed{ \boxed{ \mathtt{ \huge \red{answer}}}}}}

{ \bold{ \underline{Given }:  - }}

{ \bold{ \orange{m +  \frac{1}{m} = 3 }}}

{ \bold{  \underline\red{ To \:  \:  prove}} : -  } \\  \\  { \bold{ \orange{m =  \frac{3 +  \sqrt{5} }{2} }}} \\  \\  \\  \\ { \bold{  \boxed{ \boxed{\red{ \huge{ \bigstar \: solution \bigstar}}}}}} \\  \\  \\ { \bold{ \orange{ \implies \: m +  \frac{1}{m} = 3 }}} \\  \\  \\ { \bold{ \orange{ \implies \:  {m}^{2} + 1 = 3m }}} \\  \\  \\ { \bold{ \orange{ \implies \:  {m}^{2} - 3m + 1 = 0 }}} \\  \\ \\  { \bold{ \orange{ \implies \:m =  \frac{3 +  \sqrt{9 - 4(1)} }{2}  \:  \: and \:  \: m =  \frac{3 -  \sqrt{9 - 4} }{2}  }}} \\  \\ { \bold{ \orange{ \implies \: m =  \frac{3 +  \sqrt{5} }{2}  \:  \: and \:  \: m =  \frac{3 -  \sqrt{5} }{2} }}} \\  \\ { \bold{ \orange{ \implies \:{ \boxed{ m =  \frac{3 +  \sqrt{5} }{2}  }}}}} \:  \:  { \bold{ \orange{ \: and}}} \:  \: { \bold{ \orange{ \boxed{m =  \frac{3 -  \sqrt{5} }{2} }}}} \\  \\  \\ { \bold{ \green{ \implies \: used \:  \: formula \:    : -  }}} \\  \\ { \bold{ \blue{ \:  \:  \:  \:  \:   . \:  \: if \:  \: a {x}^{2}  + bx + c = 0 \:  \: is \:  \: an \:  \: quadratic \:  \: equation}}} \\   { \bold{ \blue{ \: \:  \:  \:  \:  \:  \:   \: then \:  \: roots \:  \: are \:  \: x =   \frac{ - b +   \sqrt{ {b}^{2}  - 4ac} }{2a}  \:  \: and \:  \: x =  \frac{ - b -  \sqrt{ {b}^{2}  - 4ac} }{2a} }}}

Similar questions