Math, asked by anvi123hpr, 1 year ago

If m+1\m = 6. Find the value of m^4 + 1/m^4

Answers

Answered by thevamp
6
\bold{\huge{hey \:mate }}
\bold{\pink{here \:is\: your\: answer}}
 {(m + \frac{1}{m} )}^{2} = {m}^{2} + 2 \times m \times \frac{1}{m} + \frac{1}{ {m}^{2} } \\ 36 = {m}^{2} + 2 + \frac{1}{ {m}^{2} } \\ 34 = {m}^{2} + \frac{1}{ {m}^{2} } \\ \\ {( {m}^{2} + \frac{1}{ {m}^{2}}})^{2} = {m}^{4} + 2 + \frac{1}{ {m}^{4} } \\ 1156 = {m}^{4} + 2 + \frac{1}{ {m}^{4} } \\ 1154 = {m}^{4} + \frac{1}{ {m}^{4}}
hope it helps

rahimkhan2: hello
Answered by Panzer786
9
Hii ☺ !!



M + 1/m = 6



Squaring both sides , we get


( m + 1/ m )² = 6²



m² + 1/m² + 2m × 1/m = 36


m² + 1/m² + 2 = 36


m² + 1/m² = 34


Now , squaring both sides again , we get



( m²+ 1/m²)² = 34²


m⁴ + 1/m⁴ + 2 m² × 1/m² = 34²



m⁴ + 1/m⁴ + 2 = 1156


m⁴ + 1/m⁴ = 1154 [ Answer]
Similar questions