Math, asked by subbabinu83, 1 day ago

if m+1/m=-p, then show that m square +1/m square=p -2square​

Answers

Answered by anukumarragula10
1

Answer:

square it on both sides and using (a-b)^2 we will be able to proove.

Attachments:
Answered by mathdude500
6

Appropriate Question :-

\rm \: If \: m + \dfrac{1}{m}  =\: -\:p, \: show \: that \:  {m}^{2}  + \dfrac{1}{ {m}^{2} } =  {p}^{2} - 2 \\

\large\underline{\sf{Solution-}}

Given that,

\rm \: m + \dfrac{1}{m} = \:- \:p \\

On squaring both sides, we get

\rm \: \bigg(m + \dfrac{1}{m}\bigg)^{2}  =  {p}^{2}  \\

We know,

\boxed{\tt{  \:  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \: }} \\

So, using this identity, we get

\rm \:  {m}^{2} +  {\bigg(\dfrac{1}{m}  \bigg) }^{2} + 2 \times m \times \dfrac{1}{m} =  {p}^{2}

\rm \:  {m}^{2} +  \dfrac{1}{ {m}^{2} }  + 2  =  {p}^{2}  \\

\rm\implies \:  {m}^{2} +  \dfrac{1}{ {m}^{2} } =  {p}^{2} - 2  \\

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More To Know :-

\rm \:  {(a - b)}^{2} =  {a}^{2} +  {b}^{2}  - 2ab \\

\rm \:  {(a + b)}^{2}  +  {(a - b)}^{2} = 2( {a}^{2} +  {b}^{2}) \\

\rm \:  {(a + b)}^{2} -  {(a - b)}^{2} = 4ab \\

\rm \:  {(a + b)}^{2} - 4ab = {(a - b)}^{2} \\

\rm \:  {(a  -  b)}^{2}  +  4ab = {(a  + b)}^{2} \\

\rm \:  {a}^{2} -  {b}^{2} = (a + b)(a - b) \\

\rm \: (x + a)(x + b) =  {x}^{2} + (a + b)x + ab \\

Similar questions